[Flash 9+]
March 2015
PI DAY
Well it’s PI-DAY and my idea is to visualize the distribution of 100.000 digits of PI.
here we go :D
Agregated results ( every 1000 iterations )
93,116,103,102,93,97,94,95,101,106 182,212,207,188,195,205,200,197,202,212 259,309,303,265,318,315,302,287,310,332 362,429,408,368,405,417,398,377,405,431 466,532,496,459,508,525,513,488,492,521 557,626,594,572,613,622,619,606,582,609 657,733,692,686,702,730,708,694,680,718 754,833,811,781,809,834,816,786,764,812 855,936,911,884,910,933,914,883,854,920 968,1026,1021,974,1012,1046,1021,970,948,1014 1070,1099,1111,1080,1133,1150,1129,1070,1031,1127 1162,1193,1214,1176,1233,1262,1227,1166,1144,1223 1266,1314,1316,1272,1343,1358,1324,1258,1243,1306 1365,1416,1419,1383,1440,1455,1426,1342,1336,1418 1456,1513,1511,1491,1553,1549,1520,1439,1455,1513 1556,1601,1593,1602,1670,1659,1615,1546,1543,1615 1667,1711,1687,1714,1755,1765,1709,1644,1643,1705 1761,1816,1773,1813,1834,1875,1818,1742,1757,1811 1854,1903,1875,1903,1946,1987,1917,1845,1869,1901 1954,1997,1986,1986,2043,2082,2017,1953,1962,2020 2049,2087,2075,2093,2141,2190,2125,2060,2068,2112 2164,2187,2167,2179,2232,2292,2232,2178,2167,2202 2260,2287,2232,2286,2346,2383,2355,2283,2266,2302 2363,2405,2308,2392,2455,2467,2449,2387,2359,2415 2476,2519,2403,2491,2549,2567,2541,2480,2465,2509 2576,2631,2495,2578,2660,2662,2640,2587,2573,2598 2684,2723,2588,2669,2765,2770,2744,2682,2672,2703 2791,2837,2687,2766,2867,2862,2839,2779,2775,2797 2897,2927,2785,2875,2960,2957,2925,2879,2876,2919 2998,3048,2897,2978,3057,3049,3012,2974,2973,3014 3086,3149,3005,3082,3154,3137,3115,3066,3090,3116 3184,3250,3103,3180,3241,3245,3217,3171,3184,3225 3286,3360,3191,3292,3326,3356,3313,3262,3307,3307 3386,3447,3298,3380,3418,3460,3431,3371,3412,3397 3486,3560,3396,3485,3511,3549,3521,3474,3519,3499 3575,3665,3477,3582,3624,3647,3628,3582,3624,3596 3679,3757,3583,3674,3716,3756,3727,3693,3715,3700 3781,3860,3687,3767,3816,3850,3831,3773,3821,3814 3885,3967,3788,3866,3915,3937,3926,3885,3933,3898 3989,4061,3892,3971,4014,4040,4026,3977,4032,3998 4090,4163,3973,4071,4105,4124,4123,4091,4148,4112 4197,4266,4059,4165,4221,4227,4218,4193,4245,4209 4301,4360,4156,4262,4312,4330,4328,4303,4326,4322 4400,4458,4240,4373,4412,4435,4440,4406,4423,4413 4519,4551,4344,4463,4508,4538,4535,4498,4528,4516 4625,4660,4446,4567,4607,4642,4625,4586,4626,4616 4723,4763,4554,4659,4721,4748,4716,4687,4722,4707 4829,4848,4653,4749,4829,4850,4831,4784,4817,4810 4932,4949,4763,4850,4914,4940,4935,4873,4928,4916 5033,5055,4867,4947,5011,5052,5018,4977,5030,5010 5134,5163,4971,5057,5112,5153,5107,5070,5129,5104 5236,5277,5066,5152,5209,5266,5195,5164,5226,5209 5326,5390,5180,5252,5294,5377,5294,5264,5306,5317 5414,5498,5287,5351,5387,5488,5380,5375,5413,5407 5501,5604,5395,5451,5503,5588,5471,5489,5501,5497 5605,5696,5500,5562,5599,5702,5562,5602,5587,5585 5701,5783,5586,5646,5704,5806,5678,5709,5698,5689 5818,5867,5683,5754,5806,5898,5769,5799,5817,5789 5908,5979,5778,5871,5889,5993,5882,5898,5910,5892 6009,6071,5894,5975,5984,6086,5980,5995,6015,5991 6102,6175,5983,6080,6074,6169,6085,6100,6146,6086 6212,6280,6086,6172,6183,6262,6191,6201,6246,6167 6293,6379,6182,6302,6268,6354,6302,6317,6339,6264 6401,6487,6299,6396,6357,6439,6392,6422,6440,6367 6500,6590,6401,6501,6464,6537,6481,6524,6533,6469 6600,6692,6515,6606,6546,6637,6574,6630,6624,6576 6713,6791,6605,6697,6647,6743,6677,6733,6718,6676 6811,6908,6695,6798,6745,6848,6770,6844,6821,6760 6891,7005,6795,6910,6849,6951,6866,6947,6917,6869 6992,7106,6892,7017,6948,7034,6966,7047,7013,6985 7086,7199,6986,7116,7050,7133,7082,7148,7111,7089 7201,7302,7101,7210,7136,7238,7186,7241,7188,7197 7309,7401,7209,7313,7230,7349,7296,7340,7270,7283 7402,7509,7306,7407,7344,7445,7401,7443,7368,7375 7492,7604,7399,7502,7456,7542,7509,7538,7471,7487 7596,7710,7499,7593,7567,7634,7609,7644,7577,7571 7690,7816,7604,7686,7663,7730,7718,7739,7679,7675 7782,7923,7708,7773,7750,7835,7837,7839,7773,7780 7887,8031,7806,7877,7858,7940,7931,7930,7866,7874 7972,8141,7920,7975,7957,8044,8026,8031,7953,7981 8083,8240,8009,8084,8058,8138,8127,8135,8052,8074 8187,8368,8108,8200,8153,8231,8215,8236,8136,8166 8281,8470,8220,8297,8260,8329,8293,8350,8229,8271 8382,8573,8314,8404,8359,8434,8396,8439,8332,8367 8488,8676,8414,8508,8447,8520,8501,8527,8445,8474 8583,8791,8519,8615,8547,8613,8593,8636,8537,8566 8686,8885,8606,8710,8668,8724,8694,8731,8635,8661 8781,8983,8698,8820,8759,8830,8794,8839,8744,8752 8880,9090,8793,8923,8857,8932,8882,8929,8863,8851 8991,9193,8887,9019,8957,9026,8992,9028,8953,8954 9075,9293,8982,9114,9080,9129,9088,9123,9063,9053 9182,9390,9098,9223,9178,9224,9205,9211,9140,9149 9302,9478,9178,9320,9277,9322,9323,9307,9243,9250 9409,9564,9280,9433,9395,9428,9406,9408,9347,9330 9502,9661,9391,9534,9490,9532,9512,9513,9450,9415 9603,9764,9488,9641,9587,9634,9602,9622,9542,9517 9707,9847,9586,9744,9683,9720,9709,9724,9667,9613 9802,9946,9698,9859,9765,9826,9818,9813,9762,9711 9897,10046,9806,9941,9870,9924,9924,9914,9889,9789 9999,10137,9908,10025,9971,10026,10029,10025,9978,9902
A cool thing to notice, is that PI look like a solid PRNG ^^
with a sample of 100.000 numbers ( => 1 / sqrt(100000) = 0.31% )
Only 1,2 and 9 are outside the interval [99969..100031]
With a “score” of 9999 I feel sad for figure 0 :'(