[Flash 9+]

March 2015

PI DAY

Well it’s PI-DAY and my idea is to visualize the distribution of 100.000 digits of PI.
here we go :D

[swfobj src=”https://www.yopsolo.fr/ressources/PI-DAY.swf” alt=”PI-DAY” width=”640″ height=”600″ allowfullscreen=”false” bgcolor=”#EEEEEE” required_player_version=”11″ wmode=”opaque”]

Agregated results ( every 1000 iterations )

93,116,103,102,93,97,94,95,101,106
182,212,207,188,195,205,200,197,202,212
259,309,303,265,318,315,302,287,310,332
362,429,408,368,405,417,398,377,405,431
466,532,496,459,508,525,513,488,492,521
557,626,594,572,613,622,619,606,582,609
657,733,692,686,702,730,708,694,680,718
754,833,811,781,809,834,816,786,764,812
855,936,911,884,910,933,914,883,854,920
968,1026,1021,974,1012,1046,1021,970,948,1014
1070,1099,1111,1080,1133,1150,1129,1070,1031,1127
1162,1193,1214,1176,1233,1262,1227,1166,1144,1223
1266,1314,1316,1272,1343,1358,1324,1258,1243,1306
1365,1416,1419,1383,1440,1455,1426,1342,1336,1418
1456,1513,1511,1491,1553,1549,1520,1439,1455,1513
1556,1601,1593,1602,1670,1659,1615,1546,1543,1615
1667,1711,1687,1714,1755,1765,1709,1644,1643,1705
1761,1816,1773,1813,1834,1875,1818,1742,1757,1811
1854,1903,1875,1903,1946,1987,1917,1845,1869,1901
1954,1997,1986,1986,2043,2082,2017,1953,1962,2020
2049,2087,2075,2093,2141,2190,2125,2060,2068,2112
2164,2187,2167,2179,2232,2292,2232,2178,2167,2202
2260,2287,2232,2286,2346,2383,2355,2283,2266,2302
2363,2405,2308,2392,2455,2467,2449,2387,2359,2415
2476,2519,2403,2491,2549,2567,2541,2480,2465,2509
2576,2631,2495,2578,2660,2662,2640,2587,2573,2598
2684,2723,2588,2669,2765,2770,2744,2682,2672,2703
2791,2837,2687,2766,2867,2862,2839,2779,2775,2797
2897,2927,2785,2875,2960,2957,2925,2879,2876,2919
2998,3048,2897,2978,3057,3049,3012,2974,2973,3014
3086,3149,3005,3082,3154,3137,3115,3066,3090,3116
3184,3250,3103,3180,3241,3245,3217,3171,3184,3225
3286,3360,3191,3292,3326,3356,3313,3262,3307,3307
3386,3447,3298,3380,3418,3460,3431,3371,3412,3397
3486,3560,3396,3485,3511,3549,3521,3474,3519,3499
3575,3665,3477,3582,3624,3647,3628,3582,3624,3596
3679,3757,3583,3674,3716,3756,3727,3693,3715,3700
3781,3860,3687,3767,3816,3850,3831,3773,3821,3814
3885,3967,3788,3866,3915,3937,3926,3885,3933,3898
3989,4061,3892,3971,4014,4040,4026,3977,4032,3998
4090,4163,3973,4071,4105,4124,4123,4091,4148,4112
4197,4266,4059,4165,4221,4227,4218,4193,4245,4209
4301,4360,4156,4262,4312,4330,4328,4303,4326,4322
4400,4458,4240,4373,4412,4435,4440,4406,4423,4413
4519,4551,4344,4463,4508,4538,4535,4498,4528,4516
4625,4660,4446,4567,4607,4642,4625,4586,4626,4616
4723,4763,4554,4659,4721,4748,4716,4687,4722,4707
4829,4848,4653,4749,4829,4850,4831,4784,4817,4810
4932,4949,4763,4850,4914,4940,4935,4873,4928,4916
5033,5055,4867,4947,5011,5052,5018,4977,5030,5010
5134,5163,4971,5057,5112,5153,5107,5070,5129,5104
5236,5277,5066,5152,5209,5266,5195,5164,5226,5209
5326,5390,5180,5252,5294,5377,5294,5264,5306,5317
5414,5498,5287,5351,5387,5488,5380,5375,5413,5407
5501,5604,5395,5451,5503,5588,5471,5489,5501,5497
5605,5696,5500,5562,5599,5702,5562,5602,5587,5585
5701,5783,5586,5646,5704,5806,5678,5709,5698,5689
5818,5867,5683,5754,5806,5898,5769,5799,5817,5789
5908,5979,5778,5871,5889,5993,5882,5898,5910,5892
6009,6071,5894,5975,5984,6086,5980,5995,6015,5991
6102,6175,5983,6080,6074,6169,6085,6100,6146,6086
6212,6280,6086,6172,6183,6262,6191,6201,6246,6167
6293,6379,6182,6302,6268,6354,6302,6317,6339,6264
6401,6487,6299,6396,6357,6439,6392,6422,6440,6367
6500,6590,6401,6501,6464,6537,6481,6524,6533,6469
6600,6692,6515,6606,6546,6637,6574,6630,6624,6576
6713,6791,6605,6697,6647,6743,6677,6733,6718,6676
6811,6908,6695,6798,6745,6848,6770,6844,6821,6760
6891,7005,6795,6910,6849,6951,6866,6947,6917,6869
6992,7106,6892,7017,6948,7034,6966,7047,7013,6985
7086,7199,6986,7116,7050,7133,7082,7148,7111,7089
7201,7302,7101,7210,7136,7238,7186,7241,7188,7197
7309,7401,7209,7313,7230,7349,7296,7340,7270,7283
7402,7509,7306,7407,7344,7445,7401,7443,7368,7375
7492,7604,7399,7502,7456,7542,7509,7538,7471,7487
7596,7710,7499,7593,7567,7634,7609,7644,7577,7571
7690,7816,7604,7686,7663,7730,7718,7739,7679,7675
7782,7923,7708,7773,7750,7835,7837,7839,7773,7780
7887,8031,7806,7877,7858,7940,7931,7930,7866,7874
7972,8141,7920,7975,7957,8044,8026,8031,7953,7981
8083,8240,8009,8084,8058,8138,8127,8135,8052,8074
8187,8368,8108,8200,8153,8231,8215,8236,8136,8166
8281,8470,8220,8297,8260,8329,8293,8350,8229,8271
8382,8573,8314,8404,8359,8434,8396,8439,8332,8367
8488,8676,8414,8508,8447,8520,8501,8527,8445,8474
8583,8791,8519,8615,8547,8613,8593,8636,8537,8566
8686,8885,8606,8710,8668,8724,8694,8731,8635,8661
8781,8983,8698,8820,8759,8830,8794,8839,8744,8752
8880,9090,8793,8923,8857,8932,8882,8929,8863,8851
8991,9193,8887,9019,8957,9026,8992,9028,8953,8954
9075,9293,8982,9114,9080,9129,9088,9123,9063,9053
9182,9390,9098,9223,9178,9224,9205,9211,9140,9149
9302,9478,9178,9320,9277,9322,9323,9307,9243,9250
9409,9564,9280,9433,9395,9428,9406,9408,9347,9330
9502,9661,9391,9534,9490,9532,9512,9513,9450,9415
9603,9764,9488,9641,9587,9634,9602,9622,9542,9517
9707,9847,9586,9744,9683,9720,9709,9724,9667,9613
9802,9946,9698,9859,9765,9826,9818,9813,9762,9711
9897,10046,9806,9941,9870,9924,9924,9914,9889,9789
9999,10137,9908,10025,9971,10026,10029,10025,9978,9902

A cool thing to notice, is that PI look like a solid PRNG ^^
with a sample of 100.000 numbers ( => 1 / sqrt(100000) = 0.31% )
Only 1,2 and 9 are outside the interval [99969..100031]

With a “score” of 9999 I feel sad for figure 0 :'(